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SUMMARY 
The complex variable boundary element method (CVBEM) for simply connected domains is extended to 
include the use of quadratic elements and interpolating functions. The derivation follows the format for 
linear elements given in the literature, with second-degree Lagrange polynomials taken as the interpolating 
functions. The quadratic-element CVBEM nodal- and interior-point equations are given in detail, and the 
resulting formulation is successfully tested by solving example problems with available analytical solutions. 
Comparisons of computational efficiency and accuracy are made between the solutions obtained using 
linear and quadratic elements. Additional comparisons are made using published results from other 
boundary element methods. 
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INTRODUCTION 

Over the past decade, the boundary element methods (BEMs) have been developed to supplement 
the well-established finite-difference methods (FDMs) and finite-element methods (FEMs) in the 
numerical solution of partial differential equations (PDEs).’. In fact, in certain situations, it has 
been shown that the BEMs can be more computationally efficient and more accurate than the 
FDMs or FEMs, particularly in the solution of Laplace’s or Poisson’s equations. 1-6 Tradition- 
ally, the BEMs have been formulated using real variables (RVBEMs), but a recent and powerful 
advance involves the use of complex variables, the result being a method known as the complex 
variable boundary element method (CVBEM).’ In either type of BEM, the computational 
dimension is one less than the physical dimension. That is, a problem posed in a domain is 
reduced to finding the solution on the boundary. As for comparison between the two methods, 
the CVBEM is limited in application to Laplace’s and Poisson’s equations, and is further limited 
to two-dimensional (2D) domains (while the RVBEMs are not), but it does possess the following 
two significant advantages over the RVBEMs: (1) the expressions for calculating the values of the 
potential at points on the interior of the domain are analytic and satisfy exactly the 2 D  Laplace 
equation and (2) all integrations are carried out analytically without the need for numerical 
integration. These factors combine to give the CVBEM excellent potential for both high accuracy 
and efficiency. 
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The origins of the CVBEM can be traced to a paper by Hunt and Issacs,* where it was applied 
to the solution of groundwater flow problems. Hromadka and Guymon’ subsequently used the 
method to predict freezing fronts in soils and then formalized the rather loose development into 
the CVBEM.” The method was also shown by Hromadka” to be a generalization of the analytic 
function method of Van Der Veer.” In the process of refining the CVBEM, HromadkaI3 
developed a technique for error visualization at  the domain boundary and determined relative 
error bounds for the method.14 He also considered the use of variable trial functions for 
improving accuracy’ ’ and investigated the proper placement of collocation points on the domain 
boundary.’ 

Various physical phenomena have been modelled by the CVBEM, including groundwater 
contaminant transport,’. 1 7 *  conduction heat transfer,’ prediction of freezing fronts in soil,’9’’ 
and stratified flows.” All these applications and developments have been detailed in a book on 
the CVBEM by Hromadka and Lai;7 however, more recent developments in the CVBEM 
(post-1987) are not covered in this book. The CVBEM has since been extended from simply 
connected to doubly and multiply connected domains by Kassab,” Kassab and Hsieh,” and 
Hsieh and K a ~ s a b . ’ ~  It was found that the complex potential along cuts in the domain does not 
cancel out, but results in a complex stream function that plays the role of a perturbation in the 
nodal equations. About the same time, Harryman et ~ 1 . ’ ~  and Hromadka” applied the CVBEM 
to specific multiply connected domains where such perturbations did not appear due to a zero- 
flux condition on the interior boundaries. More recently, MokryZ6 has applied the CVBEM to 
external potential flows. Examples were given for flows over aerofoils whose exact solutions are 
known. In all cases, the agreement of the CVBEM results with the theory was excellent. 

In the CVBEM development reviewed above, only constant or linear boundary elements were 
utilized. The use of complex variable cubic splines in conjunction with the CVBEM has been 
demonstrated by Homentcovschi and Krei~~dler . ’~ Comparisons were made with the integral 
equation method of Symm” for the conformal mapping of a bounded simply connected domain 
onto a unit disk. In general, the cubic-spline results possessed errors smaller than those of Symm 
by an order of magnitude. 

As one might expect, the jump from linear elements to cubic splines introduced significant 
complexities into the CVBEM formulation. Quadratic elements would offer a compromise 
between the linear and cubic-spline approaches, and the foundation for their use in the CVBEM 
has been laid by Hromadka’ via generalized proofs. Nevertheless, quadratic elements have never 
been attempted. It is, therefore, the purpose of this paper to present a quadratic-element 
formulation of the CVBEM for simply connected domains. 

DERIVATION OF THE FUNDAMENTAL CVBEM EQUATIONS USING QUADRATIC 
ELEMENTS 

The formulation of the quadratic-element CVBEM begins with Cauchy’s integral formula, 

o ( z o ) = L  00 dc, zoeR, zo # r. 
211i jr - zo 

This expression relates the value of the complex potential, o = C$ + i$, at point zo located inside 
the k-connected Jordan domain, R, to a contour integral (containing o) along the boundary, r. 
Here, C$ represents the real potential and $ represents the stream function. The direction of travel 
for the contour integral is such that the interior of the domain is always to the left. 
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The quadratic-element formulation of the CVBEM transforms the Cauchy integral formula 
into a BEM by using two major approximations. First, the boundary r is discretized into 
M finite-length curved elements, rj. These elements are formed by passing a quadratic poly- 
nomial through three successive nodal points. The domain boundary is taken as the union of 
these elements, as shown in Figure 1, i.e. 

M 

r=  U rj. (2) 
j= 1 

Note that the element j contains nodes k,  k + 1, and k + 2, so that the indices j and k are related by 
k = 2 j -  1 .  Further, M elements are formed from N = 2 M  nodal points. 

In the second approximation, the function w(z) is replaced by a quadratic global trial function, 
G 2 ( z ) ,  given by 

M 
G2(Z)=  1 M k ( Z )  mk + Mk+ 1 (z)mk+ 1 + Mk+ 2 ( z )  mk + 2 ?  (3) 

j =  1 
k = 2 j - 1  

where wk, oh+] ,  and Wk+2 represent the complex potential w at nodal points zk, z & + ~ ,  and z & + ~ ,  

respectively, and M k ( z ) ,  Mk+ l ( z ) ,  and Mk+ 2 ( z )  are continuous basis functions weighting the 
effects of ok, m k + ] ,  and 0k+2  over elements and rj .  These basis functions are taken as 

iyL X 

Figure 1. Boundary discretization and angle definitions in the quadratic-element CVBEM 
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second-degree Lagrange polynomials of the form 

It is necessary to explain the notation that will be used in this paper. The subscript exact will 
identify a quantity whose value is known exactly. The overbar will refer to a quantity whose value 
is specified, such as in the boundary conditions. Finally, the hat will represent a quantity whose 
value is treated as an unknown in the solution by the CVBEM. Quantities with such designations 
missing should be assumed to represent a general case in which the quantity in question may be 
either specified or unknown, depending upon the circumstances. 

By substituting C,([)  for w([) on the right-hand side of the Cauchy integral formula [equa- 
tion (l)], the second-order CVBEM approximation of w can be expressed as 

After much simplification (see Appendix I), the contour integral can be eliminated, and the 
above equation reduces to 

I M  

where 
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This formula forms the basis for the quadratic-element CVBEM. [See Figure 1 for the definition 

Equation (6), being expressed in complex variables, actually embodies two equations-one for 
of e ( z k + 2 ,  z k ;  Z O ) . ]  

the real part and one for the imaginary part. These equations are given by 

and 

k g 2 j - 1  

(8) 
Here, the superscripts R and I refer to the real and imaginary parts, respectively. 

If the values of 4 and $ (and, thus, o) are known at each boundary node, equation (6) can be 
used to calculate h at any interior point, zo. A close inspection reveals that this equation can also 
be used to calculate the value of 61 at the 'middle' node of any boundary element, Ti ,  i.e. for zo  at 
zk + ,. In most potential problems, however, boundary conditions specify either 4 (a Dirichlet 
condition) or $ (a stream function condition), but not both. To solve for the unknown values of 
4 and $ at the 'end' nodes along the boundary, i.e. for zo  at Z k ,  it is necessary to derive an extended 
version of equation (6) by moving zo to the position of z k  on the boundary. In this effort, one 
cannot simply plug in z k  for zo in equation (6) because Zk - zo appears in the denominator of the 
natural log term. Instead, one takes the limit of equation ( 5 )  as zo approaches z k .  The result. as 
derived in Appendix 11, is 

i =  1 
i , i +  l + j  
k = 2 j - 1  
I = 2 i - l  

where 
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See Figure 1 for the definition of o ( z k + 2 ,  q - 2 ;  Z k )  and O(z l+2 ,  z l ;  z k ) .  

Equation (9)  can be applied at any end boundary node, but like equation (6), equation (9) has 
real and imaginary parts. Two equations can, thus, be derived for any end boundary node k as 

1 + ck+ 2 4l+ 2 - c ; + 2  $1  + 2 )  
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As in equations (7) and (S), the superscripts R and I refer to the real and imaginary parts, 
respectively. Complete expressions for these real and imaginary parts are given in Reference 29. 

SOLUTION METHODS 

Equations (7), (8), (10) and (11) will be used to estimate the unknown values of 4 and $ at the 
boundary nodes. Prior to the presentation of the methodology for this estimation, a close 
examination of these equations is in order. It is clear from their format that &and $ on the left can 
be calculated by using the known values of 4 and $ at all boundary nodes whose indices appear 
on the right. As discussed previously, some of the values of 4 and $ at the boundary nodes are not 
specified by the boundary conditions. The methods for estimating the unspecified values of q5 and 
$ (designated 6 and $), thus, hinge on how these quantities are related to the specified quantities 
($and 6) and on which of the equations [(7), (S), (10) or (1 l)] is used in the construction of the 
matrix equation for the solution of the problem. Two sets of methods are developed, depending 
upon the location of the nodal point in the boundary element-one set for end boundary nodes 
and one set for middle boundary nodes. 

Nodal point at one end of element 

For a nodal point that is located at one end of a boundary element (e.g. z k  of rj in Figure l), 
where a Dirichlet (&specified) or stream function ($-specified) copdition is imposed, there are 
three methods of solving for the estimated nodal values of & or $ k .  

Explicit method. For a Dirichlet condition imposed at end node k ,  & is known (as &) but $k is 
not. One, thus, sets J k = 4 k = &  and $ k = $ k .  The first setting is governed by the fact that 
a Dirichlet condition is specified; no estimation is, thus, needed for &. The second setting is made 
in order to estimate the unknown value of $ k .  Without such a setting, there will be two unknowns 
( $ k  and &k) at the same nodal point, a situation-which does not allow for a unique solution. Since 
the field theory predicts that the estimated $ k ,  if error-free, should be exactly equal to that 
imposed, equating $k and t j k  is certainly justifiable. 

In the explicit method, an effort is made to keep all the unknowns on the right-hand side of the 
equation. It is, therefore, impossible to use equation (1 1) since i j k  on the left-hand side is unknown 
for the Dirichlet condition specified. Thus, equation (10) is used as 

+ c (Ck#Jl+ C!$l+ ci+ 1 h+ 1 +ci: 1 $ l +  1 + C f + 2 h + 2  + G + 2 $ 1 + 2 )  
i =  1 

i , i + l # j  
k = 2 j - l  
1 = 2 i - 1  

For the explicit method, it is sufficient to use equation (12) to solve for &k. Equation (11) is 
dropped. 

For a stream function condition at node k,  $k is known (as $ k )  but r j k  is not. One, thus, sets 
$k = $k = i j k  and f#)k = &. This time, for the explicit method of solution, equation (1 1) is used, and 
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the nodal equation is 

+ F f &  - F ! $ k  +f?+ 1 6 k +  i -F;+ 1 $ k +  1 + F F + 2  6 k +  2 - F : + 2 $ k + 2  

1 M 

+ c ( c i ' 6 l - c i . $ I + c i ' +  1 61+ 1 - c + 1  $ 1 + 1  + C i ' + 2 6 1 + 2  - C ! + 2 $ 1 + 2 )  . 
i =  1 

i , i +  1 # j  
k = 2 j - 1  
1 = 2 i - 1  

Equation (10) is dropped for this node in the solution. 

Implicit method. For a Dirichlet condition imposed at end node k,  one sets 6 k  = & and $ k =  &k. 

However, unlike the explicit method, the implicit method involves a nodal equation where 
unknowns appear on both sides. Equation (11 )  is, thus, used as 

1 
&k = -g [ FF- 2 6 k -  2 -Fk -  2 $ k -  2 + F f -  1 6 k  - 1 -F;  - 1 $k - 1 

Fk" & - F i & k  + F!+ 1 6 k +  1 - F:+ 1 $k + 1 F t +  2 6 k  + 2 - F! + 2 @k + 2 

(14) 1 M 
+ 1 (Ci'61- c:$1 + ci'+ 1 61+ 1 - cl+ 1 $ I +  1 + c : + 2  6 1 + 2  - G + 2 $ 1 + 2 )  . 

i =  1 
i , i +  1 # j  
k = 2 j - 1  
I = 2 i - l  

Equation (10) is dropped. 

Equation (10) is now used as 
Similarly, for a stream function condition specified at end node k, one sets $k = $k and +k = 4,. 

+ F i &  + F f $ k  -k F:+ 1 6 k +  1 + F f +  1 $k+ 1 +F:+ 2 6 k + 2  + F F + 2 $ k + 2  

1 M 

+ c (C&+ Cl'$l+Cf, 1 6 1 + 1  -ct: 1 $ 1 +  1 + C l + 2 6 1 + 2  +Cl'+z$r+z) . 
i =  1 

i , i +  1 Z j  
k = 2 j - 1  
1 = 2 i - 1  

Equation (1 1) is dropped. 

Hybrid method. For a Dirichlet condition imposed at end node k, one sets &=& on the 
left-hand side of equation (10) and & = 4, and $k= t j k  on the right-hand sides of equations (10) 
and (1 1) to obtain 

1 
6 k = 2 ,  [ F i - 2 6 k - 2  + F ! - 2 $ k - 2  + Fi- 1 6 k -  1 +FF- 1 $ k -  1 

i =  1 
i , i + l  # j  
k = 2 j - l  
I = 2 i - l  

J 
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1 M 
+ c (CZ4I - C 1 $ l +  cP+ 1 41 + 1 - + 1 $ I +  1 + cZ+ 2 4l+ 2 - ci+ 2 $ I +  2 )  . 

i =  1 
i . i + l # j  
k = 2 j - l  
I = 2 i - l  

Note that in equations (16) and (17) both & and $k are unknown. 
For a stream function condition imposed at end node k, one sets $k = $k on the left-hand side of 

equation (1 1) and $k = $k and q$= & on the right-hand sides of equations (10) and (1 1) to yield 

1 M 
+ 1 ( C f h  + CZ$I+ ci+ lh+ 1 + c:: 1 $ I +  1 + cf + 2 4l+ 2 + C Z + 2 $ l +  2 )  5 

i =  1 
i , i + l # j  
k = 2 j -  1 
I = 2 i - l  

1 
271 l j k =  --[ FF- 2 4 k - 2  - F ; -  2 $ k - 2  + FF- 1 d k  - 1 - F : -  1 $k- 1 

+ F! 6 k -  F:$k + FF+ 1 $k+ 1 - F:+ 1 $k+ 1 + F f +  2 4 k +  2 - F ; +  2 $k+ 2 

1 M 
+ ( c P d J l - c i $ l +  CP+l h+l - G + 1 $ 1 + 1 +  C Z + 2 4 1 + 2 - C i + 2 b h + 2 )  . 

i =  1 
i , i +  1 + j  
k = 2 j - 1  
1 = 2 i - 1  

Again, both q$ and $k are unknown. 

Nodal point at the middle of element 

At the middle nodal point k+ 1 (see Figure l), where a Dirichlet (+specified) or stream 
function ($-specified) condition is imposed, the same three methods of solving for the estimated 
nodal values of & +  or $k+ are possible. Point zo is now moved to z k +  and the methods are 
detailed as follows. 

Explicit method. - For a Dirichlet condition imposed at the middle node k+ 1, one sets 
& , = & + 1 = & + 1  and t , b k + l = $ k + ,  in equation (7) as 

1 M 

+ c ( C f h  + CZ$l + ci+ 1 $ I +  1 + cZ+ 1 $ I +  1 + c 1 + 2 4 1 + 2  + cf: 2$1+ 2 )  . 
i= 1 
i + j  

1 = 2 i - 1  

Equation (8) is dropped. 
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For a stream function condition at the middle node k +  1, one sets $ o = $ k + l  = $ k + l  and 
d k + l  = & + l  in equation (8) to yield 

i =  1 
i # j  

I = 2 i - 1  

Equation (7) is dropped for this node in the solution. 

$ h k + l = & + l  and $ O = $ k + 1 = & + 1  in equation (8) as 
Implicit method: For a Dirichlet condition imposed at the middle node k +  1, one sets 

(22) 1 M 

+ c ( C F 4 1  - c:$I + cl: 1 $ I +  1 - c:+ 1 4 1  + 1 + c Y + 2 4 1  + 2  - ct+ 2 $ 1  + 2 )  * 

i =  I 
i # j  

I = 2 i - 1  

Equation (7) is dropped. 

$ k + l = $ k + l  and 4 0 = f $ k + l = q ! J k + l .  Equation(7)isnow usedas 
Similarly, for a, stream fuqction condition specified at the middle node k +  1, one sets 

i =  1 
i + j  

I = 2 i - 1  

Equation (8) is dropped. 

Hybrid method. For a Dirichlet condition imposed at the middle node k + 1, one sets $oz & +  
and J0 = i j k  + on the left-hand sides of equations (7) and (8) and 4 k +  = d k  + and $k+ = $k + on 
the right-hand sides of these equations to obtain 

M 1 

1 M 
+ c ~ c f ' 4 l - ~ ~ $ 1 + ~ ~ + 1 4 1 + , - ~ t + 1 $ 1 + 1 + ~ : : 2 4 1 + 2 - ~ I + 2 $ ~ + 2 ~  , 

i =  1 
i Z j  

I = 2 i - 1  

Note that both & + l  and $ k + l  are unknown. 
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For a stream function condition imposed a t  node k + 1, one sets &, = q!jk + and ij0 = & +  on 
the left-hand sides of equations (7) and (8) and $k+ = $k+ and f$k+ = & +  on the right-hand 
sides of these equations to yield 

1 M 

+ c (Ck#JI+ Cf'$l+ c!+ 1 4 l +  1 + cP+ 1 $ I +  1 + c ! + 2 4 1 + 2  + C + 2 * 1 + 2 )  . 
i =  1 
i Z j  

I = 2 i - l  

M 1 

i Z j  
I = 2 i - l  

Again, both &+ and $k+ are unknown. 
For the explicit method, equation (12) is applied at each Dirichlet end node, equation (13) at 

each stream function end node, equation (20) at each Dirichlet middle node, and equation (21) at 
each stream function middle node. Similarly, for the implicit method, one applies equation (14) 
at each Dirichlet end node, equation (15) at each stream function end node, equation (22) at each 
Dirichlet middle node, and equation (23) at each stream function middle node. Finally, in the 
hybrid method, equations (16) and (17) are applied at each Dirichlet end mode, equations (18) and 
(19) at each stream function end node, equations (24) and (25) at each Dirichlet middle node, and 
equations (26) and (27) at each stream function middle node. In all three cases, a system of 
simultaneous linear algebraic equations is obtained. This system can be represented in a matrix 
form as 

Here, C is the square matrix of coefficients on the unknown values of 4 and $ and r is a vector of 
known constants. The system can be solved by any direct Tethod such as Gaussian elimination 
with scaled partial pivoting. Once the unknown values of 4 and $ are found at each boundary 
node, one can use these values, together with the specified values, 4 and $, as the boundary nodal 
values needed by equation (6) for calculating 6 at any interior point. 

Calculation of the normal gradient of the potential 

determine a 4 / a n  at these nodes. Use is made of the Cauchy-Riemann conditions, 
After 4 and $ have been evaluated at the boundary nodes, the values of $ may be used to 

where n is now taken as the outward normal to r with s as its tangential co-ordinate, assumed 
positive in the direction of the contour integral in-equation (1). The partial differential a+/& (and, 
thus, a + / & )  can be approximated by using finite-difference formulae. For example, a second- 
order-accurate, three-point backward finite-difference approximation to a $/& at node i is given 
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The values of the tangential arc length, s, can be estimated as the cumulative sum of the lengths of 
the linear segments connecting each successive nodal point, or a more sophisticated polynomial 
or spline procedure may be used. One-sided formulae should be used at corner nodes and at any 
others where the normal gradients are different on either side of the node. Central-differencing 
can be used at all the remaining nodes. Equations such as (30) can be greatly simplified if the 
nodal points are equally spaced along the boundary, and References 3 0  and 31 provide lists of 
some common finite-difference formulae which can be used when this is the case. 

Additional comments and the psi reference node 

Two more points are worthy of note. First, the implicit method is preferred over the explicit and 
hybrid methods for reasons detailed in References 7 and 29. Second, no matter what boundary 
conditions exist, one must specify a reference value of $ at some nodal point along the boundary 
in order to serve as the constant of integration in equation (5). Numerically speaking, the 
associated matrices become singular if no $ value is provided. This anchor node will be referred 
to as the ’psi reference node’. Numbering it as node i, one has 

- 
$ i =  $exact, i .  

Equation (15) or (23) (depending upon whether node i is a middle or end node) can then be used to 
determine the unknown &, as was discussed earlier in the description of the implicit method. 

If, however, the value of &xac, is also known at node i (i.e. a Dirichlet condition), one can specify 
both I$ and 4 at this node as 

- 
d i  = 4 e x a c t ,  i 

and - 

The complex potential w is, thus, fully specified, and no nodal equation needs to be applied. This 
node will be called a ‘completely specified node’. 

$ i=$exact , i*  

EXAMPLES 

The quadratic-element formulation of the CVBEM was tested by application to the circular 
domain shown in Figure 2. Two separate complex potential distributions were assumed, namely 

W = Z 2 ,  (31) 

which results in 
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and 

which results in 

Y 

2.0 17 3-1 1 .o 

9 

1 

32 

2s 

0.0 

0.0 1 .o 2.0 3.0 

Figure 2. The circular domain used to test the quadratic-element CVBEM 

w = ez, (35) 

For both distributions, Dirichlet boundary conditions were specified at all 32 boundary nodes 
(including node 1, which was treated as a completely specified node). The stream function and 
normal gradient of the potential were then calculated at each node using both the linear-element 
and the quadratic-element CVBEM. Also, and $ were calculated at five internal points labelled 
a-e in Figure 2. 

The quadratic-element CVBEM was also tested on a series of five problems considered earlier 
by Symm2* and Homentcovschi and Kreindler.27 These problems involve the conformal map- 
ping of the region bounded by the ellipse 

X’ 
- + y Z = l  
a’ (39) 

to the unit disk I WI < 1 in the complex plane in such a way that the point zo = 0 is mapped to 
W=O. Five different values of a were considered--1.25, 2.5, 5.0, 10.0, and 200. 



8 54 R. T. BAILEY AND C.  K. HSIEH 

The mapping itself is given by 

W=zexp[w(z)], 

where w(z) was determined based on the Dirichlet boundary condition 

4=  -In IzI, z E T  

imposed at 32 equally spaced nodes along the boundary, r, of the ellipse. 

calculated using 
As in References 27 and 28, an estimate of the maximum error in the modulus of W was 

EM=max ( 1  W ( Z ~ + ~ , ~ ) ( - ~ (  ( k = l , 2  ,..., N ) .  (42) 
k 

The intermediate points, zk+ were taken to lie half-way between nodes zk and zk+ along the 
boundary. 

Finally, as a more practical example in the area of fluid flow, the quadratic-element CVBEM 
was applied to the problem of potential flow over a circular cylinder. Taking advantage of 
symmetry, only one-quarter of the total domain is considered, as shown in Figure 3. The 
analytical solution is given by 

1 
0 = z + - .  

Z 
(43) 

The above expression could have been used to generate Dirichlet conditions at the boundaries, 
but since the objective of this example was to provide a somewhat realistic application for the 

(0.0, 10.0) (10.0, 10.0) 

@ = 10.0 

\ 

Figure 3. Geometry and boundary conditions for potential flow over a circular cylinder 
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method, the more physical boundary conditions shown in Figure 3 were imposed. The 4 = 10.0 
condition on the right boundary and the d4 /an=0 .0  condition at the top are approximations; 
however, it was determined that the error induced in the solution due to these approximations 
was relatively small (less than 1 per cent). 

A total of 30 nodal points were used-seven on the circular arc and on each of the four linear 
boundaries. (This sums to 35, but the five corner nodes common to two boundary segments are 
double-counted.) The nodes on the same segment were equally spaced, but spacing varied 
between segments, depending upon the length of each segment. Node 1 was placed at  location 
(00, 1.0), and the numbering proceeded counterclockwise around the boundary. (Thus, the 
double-counted nodes are 1,7, 13, 19 and 25.) The unspecified values of 4 and II/ were calculated 
at each of the 30 nodes using the linear-element and quadratic-element formulations of the 
CVBEM. The locations of representative streamlines in the interior of the domain were also 
calculated. 

All the examples in this paper were solved by using either a 33 MHz 80386 based personal 
computer equipped with a 33 MHz 80387 math co-processor or a 12 MHz 80286 based personal 
computer fixed with an 8 MHz 80287 math co-processor. The computer codes themselves were 
written in Turbo Pascal Version 4.0. Two major programs were written-one for the linear- 
element CVBEM and one for the quadratic-element CVBEM-along with several minor pro- 
grams for data creation. 

RESULTS AND DISCUSSION 

The distribution given by equation (31) was chosen specifically because o is quadratic in z. 
Therefore, the solutions obtained using quadratic elements should be exact (except for roundoff 
errors). This was indeed the case, with the values of 4 and $ at both the boundary nodes and 
interior points being accurate to at least 14 decimal places. The results for a 4 / a n  at the boundary, 
while not exact, were also good, with a maximum percentage error of 0.59 at nodal point 17 and 
a mean error of 0.18 per cent over all the boundary nodes. Some error in a b / a n  was expected 
since a$/an is not quadratic, as can be seen from equation (34). 

The exponential distribution given by equation (35) was chosen to provide a comparison 
between the solutions obtained using the linear-element and quadratic-element formulations of 
the CVBEM. The results for the percentage error in II/ and a 4 / a n  at the boundary nodes for this 
distribution are given in Figures 4 and 5, respectively. It is noted that the percentage error in 
a 4 / a n  at the boundary is a good upper bound on the overall error in the computation for two 
reasons. First, in the CVBEM, must be calculated from the nodal values of tj using 
finite-difference formulae. This makes a 4 / d n  generally less accurate than either 4 or t+h. Second, 
quantities at the boundary which are not specified by the boundary conditions tend to be less 
accurate than those calculated at  interior points. In fact, in the numerical solution of potential 
problems, the maximum error in the estimated values of 4 and $ occurs on the boundary.’ 

As shown in Figures 4 and 5, the errors at each of the nodal points were reduced significantly 
by the use of the quadratic elements, with the maximum percentage error in a 4 / a n  being 13.74 for 
the linear elements and 3.79 for the quadratic elements, an almost threefold improvement. The 
results at the interior points are given in Table I, and a similar improvement in the accuracy due 
to the quadratic elements is apparent. 

The computational times for the linear- and quadratic-element solutions referred to in Figures 
4 and 5 were 19 and 35 s, respectively, on an 80286/80287 based personal computer. However, it 
was found that a quadratic-element solution using only 16 equally spaced nodes still possessed 
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Figure 4. 
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Figure 5. Percentage error in the normal gradient of the potential at the boundary nodes of the domain shown in Figure 2 
in comparison with the complex potential given by equation (35) 
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Table I. The percentage error in I#J and $ at the interior points for the CVBEM solution on the domain of 
Figure 2 in comparison with the complex potential of equation (35) 

Linear elements Quadratic elements 

Interior Percentage error Percentage error Percentage error Percentage error 
point in 4 in $ in I#J in I(/ 

0.00 - 098 
0.18 - 1.23 

-0.18 - 2.1 1 
- 3.46 - 1.45 

3.48 - 0.56 

- 
0.00 0.142 

- 0002 0.123 
0.005 0.354 
0.054 e0.216 
0.044 0.075 

Table 11. The error EM [see equation (42)] in the solution of the conformal mapping of five 
different ellipses [see Equation (39)] onto the unit disk by four different methods 

EM 

a 
Linear-elemen t Quadratic-element Cubic-spline 

SymmZ* CVBEM CVBEM CVBEM” 
~ ~~ 

1.25 6.0 x 10-4 1.2 x 10-3 3.2 x 10-5 5.4 x 10-6 
2.5 6 5  x 10-3 1.5 x lo-’ 2-5 x 10- 3 4.3 x 10-4 
5.0 5.0 x lo-’ 5.9 x 2.9 x lo-’ 1.0 10-3 

10.0 0.21 16 0.1382 0.1068 6.1 x lo-’ 
20.0 0.4878 0.21 11 0.1989 0.3 1 

15 

10 -- I I c 1 1 1 1 1 1 1  

Q Quadratic Elements - Linear Elements 

5 -  

-5 
1 3 5 7 9 11 13 15  17 19 21  23 25 27  2 9  

Nodal Point Number 

Figure 6 .  Percentage error in the unspecified values of the potential at the boundary nodes of the domain shown in 
Figure 3 
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Figure 7. Percentage error in the unspecified values of the stream function at the boundary nodes of the domain shown in 
Figure 3 

Figure 8. Streamlines in the domain of Figure 3 as calculated by the quadratic-element CVBEM 
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a smaller maximum error in d@/dn than the 32-node linear-element solution. The run-time for 
this 16-node quadratic-element solution was 11 s. 

Table I1 shows the error, EM, for the five conformal mapping cases described earlier. The 
results are presented for a constant-element RVBEM,’* the linear-element CVBEM, the quad- 
ratic-element CVBEM, and the cubic-spline CVBEMSz7 In all the cases, the results obtained 
using the quadratic-element CVBEM are better than those of Symm or the linear-element 
CVBEM, and they compare well with those obtained using the cubic-spline CVBEM. Indeed, for 
a = 20.0, the quadratic-element results are more accurate than the spline results. Comparisons of 
computational time between the quadratic-element and cubic-spline methods were not made 
since no information on execution times was provided in Reference 27. 

Finally, CVBEM results for flow over a circular cylinder are given in Figures 6-8. Figures 6 and 
7 show the percentage error in the unspecified values of @ and t,b, respectively, at the boundary 
nodes. As with the circular domain results discussed previously, the quadratic-element solution 
was significantly more accurate, with a maximum percentage error in 4 of 5.81 for the quadratic 
elements compared to 14.49 for the linear elements. A plot of the interior streamlines as calculated 
by the quadratic-element CVBEM is shown in Figure 8. 

CLOSING REMARKS 

A word regarding the use of quadratic elements versus simply adding more nodal points with 
linear elements is in order. Although the examples presented in this paper involved relatively few 
nodes ( < 40), it is reasonable to propose that there would be a point where the addition of nodal 
points would raise the computing time to an unacceptable level. Gaussian elimination with scaled 
partial pivoting-the method chosen here for the solution of matrix equation (28)-is an N 3  
algorithm, meaning that the computational time increases roughly as the cube of the number of 
equations (nodes). Further, as the number of equations was increased, accuracy limitations 
associated with direct solution methods (such as Gaussian elimination) would be exposed. Thus, 
there would be a practical limit to the number of nodes allowed for accuracy. Iterative methods 
(such as conjugate gradient methods), although not as susceptible to roundoff error, would still 
suffer the same limitations regarding computational time. Therefore, in cases where computer 
resources are limited, either in terms of speed, precision, or storage, quadratic elements can 
provide high accuracy with modest hardware (such as a personal computer). 

Another point which is worthy of discussion is the utility of the CVBEM in general. In today’s 
CFD arena filled with exotic turbulence models and hypersonic chemically reacting flows 
simulations, it is legitimate to ask whether another method for solving Laplace’s (or Poisson’s) 
equation is really worth considering. It is the authors’ feeling that the versatile engineer carries 
with him or her a variety of numerical tools--choosing the appropriate tool for each particular 
application. The CVBEM is one such specialized but highly efficient tool that can handle complex 
boundaries in two dimensions with relative ease. It is an excellent candidate for use as a potential 
flow solver in a 2D viscous/inviscid interaction code. The ability to calculate values at any 
interior-point location once the boundary values are fully determined is a valuable feature that 
the CVBEM shares with all BEMs, since it allows the resolution of the interior flow field to be 
adjusted without re-solving the entire problem. 

In summary, a quadratic-element formulation of the CVBEM for simply connected domains 
has been presented. Previously, the linear-element CVBEM has been shown to be an effective 
numerical method for obtaining solutions to a broad range of potential problems, and a formula- 
tion using cubic splines has also been presented in the literature. The quadratic-element CVBEM 
developed herein was found to produce more accurate results than its linear-element counterpart 
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and compared well with the cubic-spline formulation. Although only Dirichlet and stream 
function boundary conditions were considered here, Neumann and Robin conditions can also be 
handled as described in References 21 and 29. It should be mentioned, however, that the inclusion 
of Neumann or Robin boundary conditions can lead to complications at boundary corners-an 
issue which has been resolved in Reference 32. Finally, since the linear-element CVBEM has been 
extended to the solution of problems in multiply connected domains, the quadratic-element 
CVBEM can be extended in this manner as well. 

APPENDIX I 

In this appendix, the steps required to transform equation (5) into equation (6) will be presented. 
By using equations (3) and (4), the contour integral in equation ( 5 )  is first rewritten as 

( z k  + 1 - i) ( z k  + 2 - c )  
( z k +  1 - z k )  ( z k  + 2 - z k )  

( i - z k )  ( z k +  2 - 0  
a k  + m k +  1 

( z k  + 1 - z k )  ( z k  + 2 - z k +  1 )  

M 
G2(c)d[= 

r C-zo j =  1 S -  
k = 2 j - l  

By expanding out the product terms, grouping like powers of i, and pulling all constants out of 
the resulting contour integrals, equation (44) becomes 

( z k + l  Z k + 2 ) m k  - ( z k z k + 2 ) m k + 1  

( z k  + 1 - z k )  ('k + 2 - z k )  ( z k  + 1 - z k )  ( z k  + 2 - z k  + 1 ) 

( z k z k +  1 ) m k +  2 

k = 2 j - 1  

+ 
( z k  + 2 - z k )  ( z k  + 2 - z k  + 1 

The three contour integrals on the right-hand of equation (45) can now be evaluated analytically 
as follows: 

i d i  
i - Z 0  

(47) 

By substituting equations (46H48) into equation (49, finding a common denominator, grouping 
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the coefficients on w k ,  W k + l ,  and w k + 2 ,  and substituting the entire result back into equation (5),  
the desired interior-point equation, equation (6), is obtained. 

APPENDIX I1 

This appendix presents the derivation of the quadratic-element CVBEM end-nodal 
equation-quation (9). In this effort, one takes the limit of equation ( 5 )  as zo approaches z k  (see 
Figure 1). To facilitate the limit process, equation ( 5 )  is first rewritten as 

so that the elements containing nodal point z k  (elements j -  1 and j )  may be treated separately. 
Using equations (45H48), equation (49) can be rewritten as 

2ni&(z0)= W k - 2  

( z k  - Z k  - 2 )  ( z k  - 1 - z k  - 2 )  

ak- 1 
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J f 

i # j  
i # j - l  

Now, taking the limit as zo approaches zk in equation (50) yields 

By utilizing equation (6) and introducing a more compact notation, equation (51) becomes the 
desired nodal equation, equation (9). 
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